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We propose that there exists a generic class of glass-forming systems that have competing states (of crys-
talline order or not) which are locally close in energy to the ground state (which is typically unique). Upon
cooling, such systems exhibit patches (or clusters) of these competing states which become locally stable in the
sense of having a relatively high local shear modulus. It is in between these clusters where aging, relaxation,
and plasticity under strain can take place. We demonstrate explicitly that relaxation events that lead to aging
occur where the local shear modulus is low (even negative) and result in an increase in the size of local patches
of relative order. We examine the aging events closely from two points of view. On the one hand we show that
they are very localized in real space, taking place outside the patches of relative order, and from the other point
of view we show that they represent transitions from one local minimum in the potential surface to another.
This picture offers a direct relation between structure and dynamics, ascribing the slowing down in glass-
forming systems to the reduction in relative volume of the amorphous material which is liquidlike. While we
agree with the well-known Adam-Gibbs proposition that the slowing down is due to an entropic squeeze (a
dramatic decrease in the number of available configurations), we do not agree with the Adam-Gibbs (or the
Volger-Fulcher) formulas that predict an infinite relaxation time at a finite temperature. Rather, we propose that
generically there should be no singular crisis at any finite temperature: the relaxation time and the associated
correlation length (average cluster size) increase at most superexponentially when the temperature is lowered.
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I. INTRODUCTION

In this paper we attempt to provide generic answers to
some long-standing questions regarding the spectacular in-
crease in relaxation times in typical structural glass formers
as the temperature is reduced [1-3]. In particular we address
the relation between structural and dynamical phenomena,
the question of existence of a typical length scale that is
associated with the slowing down [4-7], the nature of aging
in such systems [8], and the issue of existence of a “true”
glass transition temperature 7,>0 where the relaxation time
becomes infinite [9]. We will base most of our comments on
a careful analysis of one model system on which we per-
formed extensive simulations, but will provide supporting
evidence also for a second model system and an additional
experimental system for which theory had been proposed
recently. We will argue that these very different systems
share some important characteristics, and we will risk a con-
jecture that these characteristics are generic for structural
glass formers. Most importantly, these systems share the
characteristic of having, in addition to a crystalline ground
state, other states whose energy does not differ much from
the ground state, at least for relatively small patches. The
existence of such states leads first and foremost to the frus-
tration of crystallization when the temperature is lowered.
Glass formation is accompanied by the creation of local
patches, or clusters, of different nature, and these patches are
locally stable in the precise sense of having high local shear
moduli. To make this point crystal clear we will introduce
and study the notion of a local shear modulus for systems of
this kind. The existence of the inhomogeneity (or patchiness)
is characterized by a typical scale, and we will demonstrate
how this typical scale increases rapidly upon decreasing the
temperature. Aging and relaxation events occur generically
in the remainder of the system, in regions of low local shear
moduli, as will be shown below. The squeezing out of the
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regions where relaxations occur is the fundamental reason
for the slowing down, and we connect the increase of typical
scale with the increase of relaxation time. We will analyze
individual aging events and show that they can be under-
stood either as localized “excitation chains” [10] in real
space or transitions between local minima of the potential
surface [11]. Finally we will argue that our picture does not
predict the existence of a “true” glass transition, in the sense
that infinite relaxation times are expected only as T—0 (un-
less a very unlikely catastrophic crystallization event inter-
venes at a finite temperature).

In Sec. II we present results for the binary mixture glass-
forming model, studying in a variety of ways, qualitative and
quantitative, the spatial inhomogeneity that is crucial for
glass formation. In Sec. III we introduce the notion of “local
shear modulus,” explain how to compute it in numerical
simulations, and demonstrate the utility of this notion. We
show that in the clusters of relative order the local shear
modulus is typically high, whereas in between the clusters
the local shear modulus can be low, even negative, signifying
local mechanical instability. Aging events take place sponta-
neously in the latter regions. In Sec. IV we consider the
anatomy of the aging events and show that they are very
localized in real space. In terms of the potential energy land-
scape the aging events are mapped to transitions between
local minima crossing saddles of order 1 (not necessarily
always reducing the potential energy). In Sec. V we discuss
the generality of the picture emerging here with the help of
other examples of glass formers. Section VI offers a sum-
mary and a discussion.

II. CLUSTERS AND HETEROGENEITY IN A BINARY
GLASS FORMER

The two-dimensional (2D) system consists of an equimo-
lar mixture of two types of point particles interacting via an
inverse power potential [12,13]:
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FIG. 1. (Color online) A T1 process in the Voronoi tessellation
(in red lines).
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where r is the separation distance between particles of types
a and b and n=12. The particles have the same mass m, but
half of the particles are “small” with “diameter” o;=0, and
half of the particles are “large” with “diameter” o,,=1.40;
the interaction between different kinds of particles is defined
by oj,=(071+0,,)/2. We choose the units of mass, length,
and time as m, o, and T=0\Vm/ €, respectively. Other reduced
units are the system energy U*=U/€, enthalpy H*=H/e,
pressure P*=Po?/ €, reduced temperature T*=kgT/ €, with kg
being Boltzmann’s constant, and density p*=N/A*, where N
is the particle number in the simulation box of dimensionless
area A*=A/ 0.

We performed molecular dynamics simulations in the ca-
nonical (NVT) ensemble with N=1024 particles in a square
simulation box of side L"'=VA* with periodical boundary
conditions. The equations of motion were integrated using a
third order Gear predictor-corrector algorithm [14] with a
time step 67=0.0057. A constant temperature was preserved
using a velocity rescaling method [15]. At each temperature
the density was chosen in accordance with the simulations
results in an NPT ensemble as described in [13] with the
pressure value fixed at P*=13.5.

A. Clusters and heterogeneity: Qualitative picture
1. Voronoi diagrams

The Voronoi tessellation is an effective tool for the struc-
tural analysis of many-body systems. In the particular case of
two-dimensional systems the Voronoi polygon construction
associates with every configuration of the particles a subdi-
vision of position space into polygons, one per particle. The
polygon associated with any particle contains all points
closer to that particle than to any other particle. The edges of
such a polygon are the perpendicular bisectors of the vectors
joining the centers of neighboring particles.

Any Voronoi construction obeys Euler’s theorem: y=V
—E+F, where y is the Euler characteristic, V, E, and F are,
respectively, the number of vertices, edges, and faces. In an
infinite two-dimensional system with periodic boundary con-
ditions (on the torus y=0), the average number of sides of
the polygons is exactly six. This fixed average should be
conserved under a local rearrangement of the polygons. The
elementary collective movement of particles which leads to
local topological rearrangement of polygons, and known as
the T'1 process [16], is shown in Fig. 1. In a binary mixture
there are two types of particles (small and large, or blue and
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FIG. 2. (Color online) Upper panel: a Voronoi polygon construc-
tion for the hexagonal structure of a one-component system. Lower
panel: another phase of the binary mixture that can be stable at low
temperatures, made from a Voronoi tessellation of heptagons with
large particles and pentagons with small particles.

red, respectively). Thus to achieve a mapping of the particle
positions and the number of sides of the polygons in the
Voronoi tessellation, we distinguish between polygons hav-
ing small or large particles in their center. Thus a coloring
scheme of cells will take into account not only the number of
sides, but also the type of the particle in each cell.

2. Competing phases

At this point we would like to explain that the present
system has one ground state (lowest energy state), that of
phase separated hexagons of small and large particles, but
nearby there is another homogeneous state which is not too
far in energy. We expect that the ground state of the system
under consideration should be homogeneous. The obvious
candidate structure is phase-separated large and small par-
ticles (an example of Voronoi tessellation for a subsystem of
small or large particles is shown in the upper panel of Fig.
2); but this is not the only possible homogeneous phase. It
was shown [5,17,18] that the phase shown in the lower panel
of Fig. 2 is possible for our binary systems in the range
1.18 <0,/ 0<<2. This phase consists of small particles in
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FIG. 3. (Color online) A Voronoi tesselation of a typical glassy
state. Note the existence of clusters of large particles in hexagons,
small particles in hexagons, and patches of the phase shown in Fig.
2. Our point of view is that glass formers generically form clusters
of such competing ground and close to ground states.

pentagons and large particles in heptagons; these are the
polygons which in the theory of two-dimensional melting of
one-component hexagonal crystals are referred to as “de-
fects” [19]. This phase is characterized by pairs of small
particles in pentagons lying in parallel lines [17]. In one line
all the pairs have the same orientation but can change it from
line to line. Therefore this phase is periodic in one direction
and can be ordered or disordered in the other one. It is inter-
esting to compare these two homogeneous states in terms of
their energy and enthalpy, since we will argue below that
they compete in the glassy state.

The ground state of this model (at 7=0) is defined by the
minimum of the enthalpy H*=U"+ P*A* or the energy U in
an NPT or NVT ensemble respectively. In the Appendix A
we show that the ground state of our system is indeed the
phase separated hexagons of small and large particles. The
phase consisting of pentagons and heptagons is, however,
close in energy, and certainly once formed will not be easy to
deform to the phase separated ground state.

The crucial comment is that in the supercooled state this
model exhibits clusters of all these phases. In Fig. 3 we show
snapshots of the system at the temperature 7°=0.2. In the
remainder of this paper we connect between the heterogene-
ity that is caused by the existence of such clusters and the
phenomenon of slow aging in the glassy state. Reference
[13] found, using molecular dynamics simulations in the
isothermal-isobaric (NPT) ensemble, that for temperature T
>0.5 the system is liquid and for lower temperatures dy-
namical relaxation slows down. A precise glass transition had
not been identified in [13]. In [5,6] it was argued on the basis
of statistical mechanics that there exists a typical length scale
that grows superexponentially fast when the temperature de-
creases. Associated with this fast growing scale there exists a
fast growing relaxation time, such that below a certain tem-
perature the system is jammed for all practical purposes.
Here we will shed further light on this phenomenon, relating
it to the inhomogeneity seen with the bare eye in Fig. 3.
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III. CLUSTERS AND HETEROGENEITY-QUANTITATIVE
PICTURE USING THE LOCAL SHEAR MODULUS

In an NVT ensemble a given configuration can be charac-
terized by components of the microscopic stress tensor
which is defined by (see, e.g., [20])

1 wp L Ibulry) rirl
Tup= 3o Sotpp- 32 I )
A i Zj;ﬁi arij Tij

where p{* is the a component of the dimensionless momen-
tum of particle i and rf; is the a component of the vector
joining particles i and j.

The diagonal components of this tensor correspond to
density fluctuations and its trace determines the pressure, in
accordance with the virial theorem:

B U R P on
Prep T - p S  LPaii) 3
PT =P N% (s (3)

where d is the spatial dimension [h]. For interactions of the
form (1) the pressure is related to the total potential energy
of the system (Al):

P =p T +p"——. (4)
d N

The point is that an economic designation of a “state” is
given in the NVT ensemble by the pair of quantities energy
and shear stress o,.
In Fig. 4 we exhibit the actual trajectory of the molecular
dynamics simulations in the stress-energy plane for three dif-
ferent temperatures and for the same simulation time. We see
that at 7=0.2 the trajectory hovers mostly around two dis-
tinct states with infrequent transitions between them (only
one transition in this run). This is a general observation for
low temperatures: the system fluctuates around one ‘“solid-
like” state, but then jumps to another such “solid-like” state
[21]. The ease of transitions increases with temperature but
also with the number of particles. Here we have 1024 par-
ticles; in previous simulations using 256 particles [22] we
did not observe any transition at 7=0.2. Changing the tem-
perature to 7=0.3 but keeping the same simulation time one
resolves between seven to eight “solid-like” states. For T
=0.4 the trajectory now fills up an extended region in the
stress-energy plane. As stated in [22], it appears that between
“real” solid and “real” liquid the system is locally not a “vis-
cous fluid.” Rather, the trajectory concatenates a relatively
long period of time where the system behaves like a solid,
interconnected by a relatively short period of times where the
system flows between these states. Clearly, a viscous fluid
behaves very differently, responding to stress by a viscous
flow, be it as sluggish as one wishes. Here, most of the time,
the system does not respond to stress, except in the narrow
corridors of flow which become rare when the temperature
goes down and more common when the temperature warms
up. Of course this does not mean that in the sense of long
time averaging the notion of viscosity cannot be resurrected,

but locally in time this is impossible.
Since we have the system trajectory at our disposal, we
can examine more closely the structural transformation that
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FIG. 4. Trajectories from molecular dynamics simulations in the
stress-energy plane, for the three temperatures 7=0.2, 0.3, and 0.4,
respectively. U*/N is the potential energy of the system per particle.
Each point represents an average over a duration of 57, connected
with straight lines. The time of simulation is 10*7. Note the dra-
matic increase in the scale of the variations when the temperature
increases.

is taking place when the system jumps from one solid-like
state to the other. In Fig. 5 we show what happens by moni-
toring three characteristics of the system. One is simply the
energy per particle as a function of time, cf. upper inset. We
see that the energy fluctuates around a given value and then
jumps to a new state where the energy fluctuates at a lower
value. A second characteristic is the average shear stress
(o) (cf. lower inset) which exhibits a similar jump, except
that the variance of its fluctuations before the transition ap-
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FIG. 5. (Color online) Details of an event of the type seen in
Fig. 4 leading to a jump from one solidlike state to another. In the
inset we show the energy per particle and the average shear stress as
a function of time. Every point in these graphs is an average over
10* simulation steps. The figure itself is a window in the simulation
box showing that the event is a circular motion of particles replac-
ing each others position. The color code outside the event is red
particles are large and black are small. In the circular event the red
particle is large and all the rest are small.

pears considerably larger than the same variance after the
jump. Most interestingly, the figure shows a window into the
particle configuration itself, focusing on the local event that
is responsible for the jumps in the insets. We see that the
event is a concerted motion of six particles that change po-
sitions along a circular path; such events are referred to as
“excitation chains” [10]. At this point we want to explore
what is the significance of this event, why it takes place
where it does, and what is it accomplishing in terms of aging
and relaxation. To this aim we will study local mechanical
properties.

A. Local shear moduli

For inhomogeneous systems such as amorphous materials
it is important to study local properties in connection with
thermodynamical and structural characteristics. To measure
local values we take our simulation box and subdivide it into
smaller squares of length [,=L"/2* (2=<k=4). We calculated
the local stress and the local shear modulus following the
definition of these quantities in [23]. In the frame of this
approach the local stress tensor ascribed to a subdomain m
(1=m=k* in the kth level) is given by [23,24]

o 2357 Oy Ty ory
where p,, is the particle number density in the subdomain m,
and q;’; is the length of the line segment of the vector joining
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particles i and j which is located inside a subdomain m (if
this vector does not pass through this subdomain, q?}:O).
The term q:-_’;/r,»j determines how different pairwise interac-
tions are apportioned to the local stress of a subdomain m,
and includes contributions from pairs of segments located
outside the subdomain. An average of o)), over the entire
area of the simulated system yields the usual bulk stress ten-
sor (2).

The local elastic modulus tensor is related to the internal
stress fluctuations. The expression for the shear modulus per
subdomain is defined by [23,24]

2
b= = ()~ (N0, (©)

where angular brackets mean averaging over configurations
and the “infinite frequency shear modulus” w, [25,26] per

subdomain is given by
d | (19¢ur)\[ rerd\*q"
PR Y i sCUASEAN | (RS I
ar| \r dr r r

B. Results
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The results for the local shear modulus can be exhibited in
a number of forms, each shedding light on another aspect of
this useful measure. In Fig. 6 we show histograms of the
local shear modulus, for different levels of box resolution,
from coarse to fine as one goes from the upper panel to the
lowest. In general we see that as long as the temperature is
high such that the system is fluid, the histograms peak
around zero and are quite narrow. With 7=0.4 the histogram
widens, but the mean still moves only a bit from zero. Not so
for T=0.2 which is deep in the glassy domain, where the
histograms move to exhibit a positive average, but still
showing wide variations in the values of the local shear
modulus. Note that with the increase of resolution we find
more negative values of the shear modulus, and these are
indicative of sensitive regions in the system which are me-
chanically ready to exhibit aging events. To clarify this point
further we turn now to another way of presenting the same
results, color coding real space to exhibit the high degree of
spatial inhomogeneity of this system.

Typical spatial results for the local shear modulus with
spatial resolution k=3 are shown in Fig. 7. The local shear
modulus is color coded, showing positive and negative val-
ues of the local shear modulus. Obviously, in the liquid (high
temperatures) the distribution of local values averages to
zero when summed over all the cells, whereas when the sys-
tem is at low temperatures the average is positive, in agree-
ment with the results of Ref. [22]. Also, for higher tempera-
tures the spread of values of the shear modulus (or the
variance of its distribution) is smaller, whereas the variance
also increases upon decreasing the temperature.

We can then expect that spontaneous aging events will
take place where the local shear modulus is low. Indeed, for
the system shown in Fig. 7 the first aging event took place in
the square (4,5), which is a region where the local shear
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FIG. 6. (Color online) Histograms of the local shear moduli for
different temperatures (see the line type in the inset) and for differ-
ent partitions, from gross (k=2, upper panel) to fine (k=4, lower
panel). Note the tendency to move the average to positive values
with lowering the temperature, with nevertheless a tail at 7=0.2
going into negative values of the local shear modulus.

modulus attains its lowest value. We checked over many
simulations that this is indeed typical, and that looking at the
distribution of local shear moduli one can guess very reliably
where the next aging event will take place. Of course, once
the aging event occurred, the distribution of local shear
moduli changes dramatically. In Fig. 8 we show the distribu-
tion of local shear moduli affer the event in square (4,5) took
place. We see that the local shear moduli went up consider-
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FIG. 7. (Color online) Color-coded local shear modulus before
the aging transition. Note that the local values can be either positive
or negative, with positive values indicating local mechanical stabil-
ity, whereas local negative values indicate mechanical instability.
We expect relaxation (aging) events to occur in the blue regions.

ably in the region of the event; this is shown quantitatively in
Fig. 9 where the difference between the local shear modulus
in Figs. 7 and 8 is presented. We certainly need to understand
what is precisely happening here. A clue to that aim is ob-
tained when we superpose on Fig. 7 the clusters of hexagonal
patches of big particles, see Fig. 10. We see that most of the
changes in local shear modulus occur outside the clusters
which are locally stable in the mechanical sense.

IV. ANATOMY OF AGING EVENTS

In this section we examine the same localized events of
aging, or further relaxation steps toward equilibrium, but
change the point of view from real space to the potential
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FIG. 8. (Color online) Color-coded local shear modulus after the

local relaxation event occurred in box (4,5).
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FIG. 9. (Color online) Color-coded difference in the local shear
modulus between the two last figures, computed after the local re-
laxation event occurred in box (4,5).

energy landscape. We start with introducing the basic no-
tions.

A. Potential energy landscapes

One popular way of discussing the dynamics of many
particle systems is to visualize the state of the system as a
point on the surface that the potential energy function U
=f(x) draws in a Nd+ 1-dimensional space, where N is the
number of particles and d the dimension of space (d=2 in
our examples) [27]. The evolution in time is described by the
path of the coordinate vector x along the energy surface.
Adding the thermal energy to the potential energy elevates
the point above the energy surface, but we will be interested
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FIG. 10. (Color online) The same as Fig. 9 but with the clusters
of large particles superposed to show that the main changes occur
outside the clusters which are locally stable in the mechanical
sense.
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FIG. 11. (Color online) Aging process. Shown is the potential
energy per particle measured in the direct numerical simulation.
Note the existence of five relaxation events. We analyze carefully
the two events marked with ellipses.

in locating the paths associated with the relaxation events on
the potential energy surface itself. At low temperatures the
system is trapped in a minimum of this surface. In a crystal-
lized system this minimum corresponds to the global mini-
mum of the system—the ground state. In an amorphous sys-
tem, however, this minimum is typically not a global one, but
rather a local minimum which is separated from other
minima of the system by moderate potential barriers. At tem-
peratures greater than zero, we expect that, due to thermal
fluctuations, the system will pass from one minimum to an-
other via saddles. These saddles can be classified by their
“order,” which by definition is the number of negative eigen-
values of the Hessian matrix of U at the saddle. At low
temperatures one encounters typically saddles of order one
[28]. Our aim here is to focus on spontaneous aging events
and map them onto trajectories on the energy surface. To do
so we will take data from our numerical simulations, locate
the aging events, and for each point in time before and after
the event find the nearest extremum of the potential. The
methods used to find the extrema are standard and are sum-
marized for convenience in Appendix B. Unfortunately the
numerics involved in this procedure is rather heavy, and for
that reason in this section we will refer to simulations with
256 rather than 1024 particles and also somewhat higher
temperatures where there is a larger number of aging events,
cf. Fig. 4. The insights achieved are of course independent of
this numerical restriction.

As an example consider Fig. 11 depicting the potential
energy per particle as a function of time during an aging
process in a system of 256 particles. This figure contains
evidence for five aging events, and below we analyze in
detail transitions occurring in the temporal proximity of the
two events marked in red. These transitions are localized, in
the sense that the irreversible change in the configuration of
the system involves only a few particles. In Fig. 12, we can
see the actual changes in configuration caused during these
events. Here the particles’ positions are plotted before, dur-
ing, and after the event. The changed area consists of a mix
of small and large particles. A temporary displacement oc-
curs in a larger area around this region. This collective
stringlike process [29] allows for the permanent change to
take place despite the high pressure.

PHYSICAL REVIEW E 77, 061509 (2008)

FIG. 12. (Color online). Configurational changes during transi-
tions 1 and 2 in Fig. 11, respectively. Large symbols refer to large
particles and small symbols to small particles. In circles we denote
the positions of the particles before the transition, in x the positions
at the saddle and in + the positions after the transition.

Figure 13 shows the energy of the extrema found in the
vicinity of these transitions. To find those we use a time-
dependent trajectory from the molecular dynamics simula-
tion and for each configuration analyzed we seek the closest
extremum of the potential energy surface. The vertical scale
shows the potential energy of the system at the nearest ex-
tremum found using the algorithm explained in Appendix B.
Most of the time the method locates a particular extremum
with a specific energy, starting with a minimum, going
through a saddle, and ending at another minimum. We make
sure that these extrema are indeed minima or saddles by
finding the smallest eigenvalue of the Hessian matrix at each
extremum; it is positive for the minima and uniquely nega-
tive in the saddle, meaning that the saddle is of order unity.

Note that during the long residence near the first mini-
mum in Fig. 13 there are instances when the system fluctu-
ates to a point near a saddle; However, the system remains
trapped in the first minimum until the aging transition takes
place.

The same method showed similar results for the first tran-
sition marked in Fig. 11, i.e., a transition between two
minima, with the transition state being a first order saddle
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FIG. 13. (Color online) Energy of nearest extrema as a function
of time for the first and the second transitions in Fig. 11, respec-
tively. Note that in the upper panel we focus on an event in which
the energy is increasing, and compare with Fig. 14.

point. It is therefore of interest to find the “reaction coordi-
nate” for the transition, or the path on the potential surface
which underlies the aging process. It is very difficult to do so
using the molecular dynamics simulation, and to achieve this
we used the method of “eigenvector following” (see the Ap-
pendix B for details). Starting from the saddle, one takes a
small step in one of the directions of the negative eigenvalue
and then uses the eigenvector following algorithm to trace
the path leading to the minimum lying in this direction. This
method works very well, resulting in the reaction coordinates
shown in Fig. 14. It is important to notice that the energies of
the minima are indeed in agreement with the results of the
previous algorithm. We thus believe that the result shown
connect indeed between the picture in time and the picture in
energy landscape, and the reaction coordinate is the one cor-
responding to the temporal events shown in Fig. 11.

V. OTHER MODELS

The emerging insight from the analysis presented in the
pervious section is that the reason for the slowing down in
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FIG. 14. “Reaction coordinate” for the two marked transitions in
Fig. 11. These graphs are obtained by starting at the saddle point
and moving in the direction of the (unique) unstable eigenvector.
Note that in general saddles are not guaranteed to be of order 1, and
may have more than one unstable direction.

glass-forming systems is the generation of clusters of ground
and close to ground states. These clusters have relatively
high local shear moduli, since they are mechanically stable
and can support locally a significant amount of shear without
flowing. In between the clusters is where the aging events
take place, and indeed in those regions the local shear moduli
are small, even negative, depending on the resolution of the
calculation of the local shear modulus. When the temperature
gets lower, the clusters increase in size, but there is no point
of crisis where the relaxation time diverges unless 7=0 or
for some reason the system crystallizes. Note that the lack of
such finite temperature crisis was shown rigorously for this
particular model of binary mixture in [9]. One question that
we need to ask is whether this behavior is generic to glass
formers or is it a peculiarity of systems in two dimensions or
even to the present model of binary mixture in two dimen-
sions.

In the context of our own work we have considered re-
cently two other, very different, models of glass formers, i.e.,
the two-dimensional Shintani-Tanaka model [30] and the
three-dimensional experimental system of dry glycerol [31].
In both systems it was demonstrated, using quantitative
theory, that the scenario discussed here appears general, in-
dependent of the very different details and the different di-
mensionality characterizing these systems [7,32]. Thus, for
example, we could show in the context of the Shintatni-
Tanaka model that there exists a typical sale ¢ that dominates
the mean relaxation time as a function of the temperature. In
other words, the 7, relaxation time in this model could be
quantitatively determined by a formula reading

To= Ty eXp(A/T), (8)

where A is a temperature-independent dimensional constant
and 7, is the microscopic attempt time. A similar result was
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TABLE 1. NPT ensemble and NVT ensemble.

Phase NPT NPT NVT NVT
separated mixture separated mixture
hexagons of small hexagons of small
and large particles and large particles
1 1.031 1.003 1.039 0.995
o0 1.376 1.473 1.386 1.462
1o - 1.187 - 1.179
P* 13.5 13.5 12.2 14.9
" 0.781 0.77 0.77 0.781
U*IN 2.881 2.922 2.648 3.179
H*/N 20.168 20.453 18.752 22.257

demonstrated for the present binary model in [5]. The non-
Arrhenius behavior of this formula is due to the strong in-
crease of ¢ when the temperature decreases, due to the in-
crease in the size of the clusters, but without any singularity
at any temperature 7> 0. For the glycerol one could go even
further, predicting not only the mean relaxation time but also
computing the functional form of the dielectric response
function in good relation to experiments. Here one argued
that each cluster of s molecules contributes an exponential
decay of its dipole moment with an s-dependent decay con-
stant. Once averaged over all the clusters, the resulting re-
sponse function is strongly nonexponential as is indeed ob-
served. The main point is that the long relaxation times are
again due to the large clusters (a smaller cluster may contrib-
ute B3 peaks when the conditions are right, cf. [32]). As long
as the system does not crystallize there is no mechanism for
a crisis of the type predicted by the Vogel-Fulcher formula or
the Kauzmann argument. For a more detailed discussion of
this important issue the reader is referred to [9].

VI. SUMMARY AND DISCUSSION

In summary, we focused on generic aging events in our
glassy system to understand the relation between slowing
down and spatial inhomogeneity. We have shown that the
inhomogeneity can be seen in two complementary ways, one
by observing the clusters of competing ground and close to
ground states, and the other by measuring the local shear
modulus. The latter quantity fluctuates from place to place,
tending to be high and positive in the presence of clusters
and low and even negative outside the clusters. Aging events
occur in these mechanically unstable regions, and they result
in a local reorganization, usually increasing the area spanned
by clusters. We examined closely the nature of these aging
events and showed again that they can be described in two
complementary forms. One is a localized chain of move-
ments, a so-called “excitation chain” (accompanied by a
larger reversible collective motion) and the second is a tran-
sition between two inherent states, or local minima in the
potential surface of the system, with the transition crossing a
saddle point of order unity. Note that we could differentiate
between the very localized permanent change and the
“string-like” event that is in part reversible.
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We proposed, on the basis of the present model of a bi-
nary mixture and other systems that were analyzed recently
in the same spirit, that the results obtained here are generic,
and that there exists a wide class of glass-forming systems
whose theoretical understanding calls for an analysis of its
distribution of clusters of competing ground and close to
ground states; in a future paper we will show that the tem-
poral properties of such systems can be completely under-
stood in these terms.

APPENDIX A: GROUND STATE

The average potential energy per particle in a binary mix-
ture with the interactions defined by the potential (1) is given

by
U* 1 o 12
T (—b) , (A1)
N 2Nl'#j rl'j

where r;; is the distance between particles i and .

For the equimolar system of N— separated small and
large particles (see the upper panel of Fig. 2) the interactions
between the two species is negligible [o(1/vN)] and the total
energy (Al) can be written as

lﬂé[(ﬂ)ﬂ(@)”]
N_Z i )y ’

where r;; and ry, are the distances between small and large
particles, respectively. ~

The area of a hexagon is %rz, where r is the distance
between particles. The dimensionless total area A*=1/p" per
particle of the system of separated small and large particles is
given by

(A2)

A

N I(r%l +13,). (A3)
The enthalpy depends on two variables rq; and r,,, so the
minimum of this function is defined by two equations
OH"/dr ;=0 and dH"/dry=0. Solutions of these equations
and evaluated values for the energy, enthalpy, and density are
displayed in Table I.

In the configuration where small and large particles are
mixed (the lower panel of Fig. 2) each small particle inter-
acts with one small particle and four large particles. In turn,
each large particle interacts with three neighboring large par-
ticles and four neighboring small particles. Therefore the

general expression (Al) is simplified to

U~< 1 12 12 12
_z_[(ﬂ) +8(@) w(2)] e
N 4 \ry Iz )

where in addition to Eq. (A2) the contribution of interactions
between small and large particles separated by r;, are taken
into account.

Any configuration of homogeneously mixed small and
large particles can be constructed using a “boat” unit [18]
(see the lower panel of Fig. 2) which consists of one “thin”
and three “fat” rhombi. There are 1/4N “thin” rhombi and
3/4N “fat” rhombi in the system, so the area per particle is
given by
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®

AT 1, N
—= Z(AT+ 34%),

N (A5)

where A7 is the area of a thin rthombus and A} that of a fat
one.

It follows from the boat design that the distances between
particles are not independent. It is useful to introduce a new
variable «, the small angle of the fat thomb, so that the large
angle of the thin thomb is 27—3«. All rhombi have sides of
the same size ry, and the distances between small-small and
large-large particles can be expressed as

3
i =-2rp cos(Ea) ,

1
r22=2r12 Sln(aa)

The area per particle of the mixed system (A5) as a func-
tion of these variables is given by

(A6)

AT

N

Substitution of Eq. (A6) into Eq. (A4) yields the follow-
ing expression for the energy:

U* 1 1 12 12 12
(oo 2]
N  4\2rp, cos(ia) 51n(5a)

(A8)

= 71l sin(3a) + 3sin(@)] = iy sin’(@). (A7)

The minimum of the enthalpy in this case is defined by equa-
tions dH"/dry,=0 and dH*/ da=0. The solution for the angle
a depends only on the ratio 0,/ o, and for the system under
consideration a=76.65°. The interparticle distances, energy,
enthalpy, and density are shown in Table I.

In the NVT ensemble it is necessary to find the minimum
of the energy given by Eq. (A2) or Eq. (A8) under the con-
straints (A3) or (A7), respectively. The calculation results are
also presented in Table 1.

APPENDIX B: LOCATING EXTREMA

Finding a local minimum of a function of several vari-
ables is a common problem in applied math. There are sev-
eral methods for doing this; some of them like the Newton-
Raphson method are quite simple. Finding a saddle point, on
the other hand, is a more subtle problem since it is not clear
if the appropriate direction to go is up or downhill. In our
work we have used two different methods to overcome this
problem.

1. Square gradient minimization

One way of finding saddle points is by finding a local
minimum of the squared modulus of the gradient of the
original potential function:
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(B1)

W) = [VU)P = EE(‘;U)

i=1 a=1 [?'xla

Since W(x) is non-negative, at the absolute minima W(x)
=0, which implies VU=0 (a saddle point). An efficient way
to minimize such functions is the Newton-Raphson method.
At each algorithm step x,,,;=x,+ dx, the following equation
should be satisfied:

VU(x, + éx,) =0. (B2)
This equation is solved to first order:
VU(x,) + &x,V*U(x,) = 0. (B3)
Inverting for &x, one finds
x, =— V2U(x,) V U(xn):—I:IV Ux,). (B4)

We have used a publicly available numerical algorithm—the
LBFGS algorithm ([33,34]) which uses an approximate ver-
sion of the Newton method. The biggest drawback in mini-
mizing the function W(x) instead of minimizing U(x) di-
rectly is that the minimization often converges to a local
minimum of W(x), which is not a saddle point of U(x).
Therefore, when minimizing a molecular dynamics realiza-
tion of a system traveling in the energy landscape, not all of
the instantaneous states converge to a minimum or a saddle
of V(x) and some information is lost.

2. Eigenvector following

In order to demonstrate the topological connectedness of
two minima separated by a saddle we have used the eigen-
vector following the algorithm as described by Wales and
co-workers [35-37] (the original idea for the algorithm was
proposed by Cerjan and Miller [38]). At each iteration a step
Ax is proposed, which in the base that diagonalizes the Hes-
sian (at the specific point in the algorithm path) is [36,37]

2g,
S, TN (BS)
7| (1 4+ N1 +4g,/h,)

X, =

where h,, are the eigenvalues of the Hessian and g, are the
components of the gradient in the diagonal base (Ax, is set
to O for the directions where hM:O; i.e., uniform displace-
ments). The sign §,,= * 1 is chosen as explained below. Note
that as g P 0,

8
M=_;1E+0(gi)’ (B6)

yn

Ax 8u—0,

where the first term is the Newton-Raphson step.

If §,=—1 the algorithm converges to a minimum along .
Therefore starting from a saddle of order one, setting all of
the §,, to —1 we were able to reach the two minima separated
by this saddle.
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